當(dāng)前位置: 首頁(yè) > 儀表工具產(chǎn)品 > 試驗(yàn)室儀器 > 顯微鏡
發(fā)布日期:2022-10-09 點(diǎn)擊率:66
一、原理
原子力顯微鏡(Atomic Force Microscopy, AFM)是由IBM 公司的Binnig與史丹佛大學(xué)的Quate 于一九八五年所發(fā)明的,其目的是為了使非導(dǎo)體也可以采用掃描探針顯微鏡(SPM)進(jìn)行觀測(cè)。
原子力顯微鏡(AFM)與掃描隧道顯微鏡(STM)最大的差別在于并非利用電子隧道效應(yīng),而是利用原子之間的范德華力(Van Der Waals Force)作用來(lái)呈現(xiàn)樣品的表面特性。假設(shè)兩個(gè)原子中,一個(gè)是在懸臂(cantilever)的探針尖端,另一個(gè)是在樣本的表面,它們之間的作用力會(huì)隨距離的改變而變化,其作用力與距離的關(guān)系如“圖1” 所示,當(dāng)原子與原子很接近時(shí),彼此電子云斥力的作用大于原子核與電子云之間的吸引力作用,所以整個(gè)合力表現(xiàn)為斥力的作用,反之若兩原子分開(kāi)有一定距離時(shí),其電子云斥力的作用小于彼此原子核與電子云之間的吸引力作用,故整個(gè)合力表現(xiàn)為引力的作用。若以能量的角度來(lái)看,這種原子與原子之間的距離與彼此之間能量的大小也可從Lennard –Jones 的公式中到另一種印證。
圖1、原子與原子之間的交互作用力因?yàn)楸舜酥g的距離的不同而不同,
其之間的能量表示也會(huì)不同
從公式中知道,當(dāng)r降低到某一程度時(shí)其能量為+E,也代表了在空間中兩個(gè)原子是相當(dāng)接近且能量為正值,若假設(shè)r增加到某一程度時(shí),其能量就會(huì)為-E 同時(shí)也說(shuō)明了空間中兩個(gè)原子之距離相當(dāng)遠(yuǎn)的且能量為負(fù)值。不管從空間上去看兩個(gè)原子之間的距離與其所導(dǎo)致的吸引力和斥力或是從當(dāng)中能量的關(guān)系來(lái)看,原子力式顯微鏡就是利用原子之間那奇妙的關(guān)系來(lái)把原子樣子給呈現(xiàn)出來(lái),讓微觀的世界不再神秘。
在原子力顯微鏡的系統(tǒng)中,是利用微小探針與待測(cè)物之間交互作用力,來(lái)呈現(xiàn)待測(cè)物的表面之物理特性。所以在原子力顯微鏡中也利用斥力與吸引力的方式發(fā)展出兩種操作模式:
(1)利用原子斥力的變化而產(chǎn)生表面輪廓為接觸式原子力顯微鏡(contact AFM ),探針與試片的距離約數(shù)個(gè)。
(2)利用原子吸引力的變化而產(chǎn)生表面輪廓為非接觸式原子力顯微鏡(non-contact AFM ),探針與試片的距離約數(shù)十個(gè)? 到數(shù)百個(gè)?。
二、原子力顯微鏡的硬件架構(gòu):
在原子力顯微鏡(Atomic Force Microscopy,AFM)的系統(tǒng)中,可分成三個(gè)部分:力檢測(cè)部分、位置檢測(cè)部分、反饋系統(tǒng)。
圖2、原子力顯微鏡(AFM)系統(tǒng)結(jié)構(gòu)
2.1 力檢測(cè)部分:
在原子力顯微鏡(AFM)的系統(tǒng)中,所要檢測(cè)的力是原子與原子之的范德華力。所以在本系統(tǒng)中是使用微小懸臂(cantilever)來(lái)檢測(cè)原子之間力的變化量。這微小懸臂有一定的規(guī)格,例如:長(zhǎng)度、寬度、彈性系數(shù)以及針尖的形狀,而這些規(guī)格的選擇是依照樣品的特性,以及操作模式的不同,而選擇不同類型的探針。
2.2 位置檢測(cè)部分:
在原子力顯微鏡(AFM)的系統(tǒng)中,當(dāng)針尖與樣品之間有了交互作用之后,會(huì)使得懸臂cantilever擺動(dòng),所以當(dāng)激光照射在cantilever的末端時(shí),其反射光的位置也會(huì)因?yàn)閏antilever擺動(dòng)而有所改變,這就造成偏移量的產(chǎn)生。在整個(gè)系統(tǒng)中是依靠激光光斑位置檢測(cè)器將偏移量記錄下并轉(zhuǎn)換成電的信號(hào),以供SPM控制器作信號(hào)處理。
2.3 反饋系統(tǒng):
在原子力顯微鏡(AFM)的系統(tǒng)中,將信號(hào)經(jīng)由激光檢測(cè)器取入之后,在反饋系統(tǒng)中會(huì)將此信號(hào)當(dāng)作反饋信號(hào),作為內(nèi)部的調(diào)整信號(hào),并驅(qū)使通常由壓電陶瓷管制作的掃描器做適當(dāng)?shù)囊苿?dòng),以保持樣品與針尖保持合適的作用力。
原子力顯微鏡(AFM)便是結(jié)合以上三個(gè)部分來(lái)將樣品的表面特性呈現(xiàn)出來(lái)的:在原子力顯微鏡(AFM)的系統(tǒng)中,使用微小懸臂(cantilever)來(lái)感測(cè)針尖與樣品之間的交互作用,這作用力會(huì)使cantilever擺動(dòng),再利用激光將光照射在cantilever的末端,當(dāng)擺動(dòng)形成時(shí),會(huì)使反射光的位置改變而造成偏移量,此時(shí)激光檢測(cè)器會(huì)記錄此偏移量,也會(huì)把此時(shí)的信號(hào)給反饋系統(tǒng),以利于系統(tǒng)做適當(dāng)?shù)恼{(diào)整,最后再將樣品的表面特性以影像的方式給呈現(xiàn)出來(lái)。
激光檢測(cè)原子力顯微鏡
原子力顯微鏡的基本原理是:將一個(gè)對(duì)微弱力極敏感的微懸臂一端固定,另一端有一微小的針尖,針尖與樣品表面輕輕接觸,由于針尖尖端原子與樣品表面原子間存在極微弱的排斥力,通過(guò)在掃描時(shí)控制這種力的恒定,帶有針尖的微懸臂將對(duì)應(yīng)于針尖與樣品表面原子間作用力的等位面而在垂直于樣品的表面方向起伏運(yùn)動(dòng)。利用光學(xué)檢測(cè)法或隧道電流檢測(cè)法,可測(cè)得微懸臂對(duì)應(yīng)于掃描各點(diǎn)的位置變化,從而可以獲得樣品表面形貌的信息。下面,我們以激光檢測(cè)原子力顯微鏡(Atomic Force Microscope Employing Laser Beam Deflection for Force Detection, Laser-AFM)——掃描探針顯微鏡家族中最常用的一種為例,來(lái)詳細(xì)說(shuō)明其工作原理。
如圖3所示,二極管激光器(Laser Diode)發(fā)出的激光束經(jīng)過(guò)光學(xué)系統(tǒng)聚焦在微懸臂(Cantilever)背面,并從微懸臂背面反射到由光電二極管構(gòu)成的光斑位置檢測(cè)器(Detector)。在樣品掃描時(shí),由于樣品表面的原子與微懸臂探針尖端的原子間的相互作用力,微懸臂將隨樣品表面形貌而彎曲起伏,反射光束也將隨之偏移,因而,通過(guò)光電二極管檢測(cè)光斑位置的變化,就能獲得被測(cè)樣品表面形貌的信息。
在系統(tǒng)檢測(cè)成像全過(guò)程中,探針和被測(cè)樣品間的距離始終保持在納米(10 -9 米)量級(jí),距離太大不能獲得樣品表面的信息,距離太小會(huì)損傷探針和被測(cè)樣品,反饋回路(Feedback)的作用就是在工作過(guò)程中,由探針得到探針-樣品相互作用的強(qiáng)度,來(lái)改變加在樣品掃描器垂直方向的電壓,從而使樣品伸縮,調(diào)節(jié)探針和被測(cè)樣品間的距離,反過(guò)來(lái)控制探針-樣品相互作用的強(qiáng)度,實(shí)現(xiàn)反饋控制。因此,反饋控制是本系統(tǒng)的核心工作機(jī)制。
本系統(tǒng)采用數(shù)字反饋控制回路,用戶在控制軟件的參數(shù)工具欄通過(guò)以參考電流、積分增益和比例增益幾個(gè)參數(shù)的設(shè)置來(lái)對(duì)該反饋回路的特性進(jìn)行控制。
上一篇: 索爾維全系列Solef?PV